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In Finsler geometry, each point of a base manifold can be endowed with coordinates describing its position as well as a set of one or
more vectors describing directions, for example.The associatedmetric tensormay generally depend on direction as well as position,
and a number of connections emerge associated with various covariant derivatives involving affine and nonlinear coefficients.
Finsler geometry encompasses Riemannian, Euclidean, and Minkowskian geometries as special cases, and thus it affords great
generality for describing a number of phenomena in physics. Here, descriptions of finite deformation of continuous media are of
primary focus. After a review of necessary mathematical definitions and derivations, prior work involving application of Finsler
geometry in continuum mechanics of solids is reviewed. A new theoretical description of continua with microstructure is then
outlined, merging concepts from Finsler geometry and phase field theories of materials science.

1. Introduction

Mechanical behavior of homogeneous isotropic elastic solids
can be described by constitutive models that depend only
on local deformation, for example, some metric or strain
tensor that may generally vary with position in a body.
Materials with microstructure require more elaborate consti-
tutive models, for example, describing lattice orientation in
anisotropic crystals, dislocationmechanisms in elastic-plastic
crystals, or cracks or voids in damaged brittle or ductile
solids. In conventional continuum mechanics approaches,
such models typically assign one or more time- and position-
dependent vector(s) or higher-order tensor(s), in addition
to total deformation or strain, that describe physical mech-
anisms associated with evolving internal structure.

Mathematically, in classical continuum physics [1–3],
geometric field variables describing behavior of a simply con-
nected region of a body depend fundamentally only on ref-
erential and spatial coordinate charts {𝑋𝐴} and {𝑥

𝑎
} (𝐴, 𝑎 =

1, 2, . . . 𝑛) related by a diffeomorphism𝑥 = 𝜑(𝑋, 𝑡), with𝑥 and

𝑋 denoting corresponding points on the spatial and material
manifolds covered by corresponding chart(s) and 𝑡 denoting
time. State variables entering response functions depend
ultimately only on material points and relative changes in
their position (e.g., deformation gradients of first order
and possibly higher orders for strain gradient-type models
[4]). Geometric objects such as metric tensors, connection
coefficients, curvature tensors, and anholonomic objects [5]
also depend ultimately only on position. This is true in
conventional nonlinear elasticity and plasticity theories [1, 6],
as well as geometric theories incorporating torsion and/or
curvature tensors associated with crystal defects, for example
[7–15]. In these classical theories, the metric tensor is always
Riemannian (i.e., essentially dependent only upon 𝑥 or 𝑋

in the spatial or material setting), meaning the length of a
differential line element depends only on position; however,
torsion, curvature, and/or covariant derivatives of the metric
need not always vanish if the material contains various
kinds of defects (non-Euclidean geometry). Connections are
linear (i.e., affine). Gauge field descriptions in the context of
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Riemannian metrics and affine connections include [16, 17].
Relevant references in geometry and mathematical physics
include [18–26], in addition to those already mentioned.
Finite deformation director theories of micropolar type are
addressed in the context of Riemannian (as opposed to
Finslerian) metrics in [1, 27].

Finsler geometry, first attributed to Finsler in 1918 [28],
is more general than Riemannian geometry in the sense that
the fundamental (metric) tensor generally may depend on
additional independent variables, labeled here as 𝑦 and 𝑌

in spatial and material configurations, with corresponding
generalized coordinates {𝑦

𝑎
} and {𝑌

𝐴
}. Formal definitions

will be given later in this paper; for the present immediate
discussion, it suffices to mention that each point can be con-
sidered endowedwith additional degrees-of-freedombeyond
𝑥 or 𝑋 and that transformation laws among coordinates as
well as connection coefficients (i.e., covariant differentials)
generally depend on 𝑦 or 𝑌 as well as 𝑥 or 𝑋. Relevant
references in mathematics include [29–32]. For descriptions
of mechanics of solids, additional degrees-of-freedom can be
associated with evolving features of the microstructure of the
material, though more general physical interpretations are
possible.

The use of Finsler geometry to describe continuum
mechanical behavior of solids was perhaps first noted by
Kröner in 1968 [33] and Eringen in 1971 [3], the latter
reference incorporating some basic identities and definitions
derived primarily by Cartan [34], though neither devel-
oped a Finsler-based framework more specifically directed
towards mechanics of continua. The first theory of Finsler
geometry applied to continuum mechanics of solids with
microstructure appears to be the purely kinematic theory of
Ikeda [35], in a generalization of Cosserat-type kinematics
whereby additional degrees-of-freedom are director vectors
linked to structure. This theory was essentially extended by
Bejancu [30] to distinguish among horizontal and vertical
distributions of the fiber bundle of a deforming pseudo-
Finslerian total space. More complete theories incorporating
a Lagrangian functional (leading to physical balance or
conservation laws) and couched in terms of Finsler geom-
etry were developed by Saczuk, Stumpf, and colleagues for
describing solids undergoing inelastic deformation mecha-
nisms associated with plasticity and/or damage [36–40]. To
the author’s knowledge, solution of a boundary value problem
in solid mechanics using Finsler geometric theory has only
been reported once, in [38]. Finsler geometry has been
analogously used to generalize fundamental descriptions
in other disciplines of physics such as electromagnetism,
quantum theory, and gravitation [30, 41–43].

This paper is organized as follows. In Section 2, requisite
mathematical background on Finsler geometry (sometimes
called Riemann-Finsler geometry [31]) is summarized. In
Section 3, the aforementioned theories from continuum
physics of solids [30, 35–38, 40] are reviewed and compared.
In Section 4, aspects of a new theory, with a primary intention
of description of structural transformation processes in real
materials, are proposed and evaluated. Conclusions follow in
Section 5.

2. Finsler Geometry: Background

Notation used in the present section applies to a referential
description, that is, the initial state; analogous formulae apply
for a spatial description, that is, a deformed body.

2.1. Coordinates and Fundamentals. Denote by 𝑀 an 𝑛-
dimensional𝐶∞manifold. Each element (of support) of𝑀 is
of the form (𝑋, 𝑌), where 𝑋 ∈ 𝑀 and 𝑌 ∈ 𝑇𝑀, with 𝑇𝑀 the
tangent bundle of 𝑀. A Finsler structure of 𝑀 is a function
𝐿 : 𝑇𝑀 → [0,∞) with the following three properties [31]:

(i) The fundamental function 𝐿 is 𝐶∞ on 𝑇𝑀 \ 0;
(ii) 𝐿(𝑋, 𝜆𝑌) = 𝜆𝐿(𝑋, 𝑌) ∀𝜆 > 0 (i.e., 𝐿 is homogeneous

of degree one in 𝑌);

(iii) the fundamental tensor 𝐺
𝐴𝐵

= (1/2)𝜕
2
(𝐿
2
)/𝜕𝑌
𝐴
𝜕𝑌
𝐵

is positive definite at every point of 𝑇𝑀 \ 0.

Restriction of 𝐿 to a particular tangent space 𝑇
𝑋
𝑀 gives rise

to a (local) Minkowski norm

𝐿
2
(𝑌) = 𝐺

𝐴𝐵 (𝑌) 𝑌
𝐴
𝑌
𝐵
, (1)

which follows from Euler’s theorem and the identity

𝐺
𝐴𝐵

=
𝐿𝜕
2
𝐿

𝜕𝑌𝐴𝜕𝑌𝐵
+ (

𝜕𝐿

𝜕𝑌𝐴
)(

𝜕𝐿

𝜕𝑌𝐵
) . (2)

Specifically letting 𝑌
𝐴

→ d𝑋𝐴, the length of a differential
line element at𝑋 depends in general on both𝑋 and 𝑌 as

|dX (𝑋, 𝑌)| = √dX ⋅ dX = [𝐺
𝐴𝐵 (𝑋, 𝑌) d𝑋𝐴d𝑋𝐵]

1/2

. (3)

A Finsler manifold (𝑀, 𝐹) reduces to a Minkowskian man-
ifold when 𝐿 does not depend on 𝑋 and to a Riemannian
manifold when 𝐿 does not depend on 𝑌. In the latter
case, a Riemannian metric tensor is 𝐺

𝐴𝐵
(𝑋)𝑑𝑋

𝐴
⊗ 𝑑𝑋

𝐵.
Cartan’s tensor, with the following fully symmetric covariant
components, is defined for use later:

𝐶
𝐴𝐵𝐶

=
1

2

𝜕𝐺
𝐴𝐵

𝜕𝑌𝐶
=

1

4

𝜕
3
(𝐿
2
)

𝜕𝑌𝐴𝜕𝑌𝐵𝜕𝑌𝐶
. (4)

Consider now a coordinate transformation to another
chart on𝑀; for example,

𝑋
𝐴
= 𝑋
𝐴
(𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
) , �̃�

𝐴
= (

𝜕𝑋
𝐴

𝜕𝑋𝐵
)𝑌
𝐵
. (5)

From the chain rule, holonomic basis vectors on 𝑇𝑀 then
transform as [30, 31]

𝜕

𝜕𝑋𝐴
=

𝜕𝑋
𝐵

𝜕𝑋𝐴

𝜕

𝜕𝑋𝐵
+

𝜕
2
𝑋
𝐵

𝜕𝑋𝐴𝜕𝑋𝐶
�̃�
𝐶 𝜕

𝜕𝑌𝐵
, (6)

𝜕

𝜕�̃�𝐴
=

𝜕𝑋
𝐵

𝜕𝑋𝐴

𝜕

𝜕𝑌𝐵
. (7)
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2.2. Connections and Differentiation. Christoffel symbols of
the second kind derived from the symmetric fundamental
tensor are

𝛾
𝐴

𝐵𝐶
=

1

2
𝐺
𝐴𝐷

(
𝜕𝐺
𝐵𝐷

𝜕𝑋𝐶
+

𝜕𝐺
𝐶𝐷

𝜕𝑋𝐵
−

𝜕𝐺
𝐵𝐶

𝜕𝑋𝐷
) . (8)

Lowering and raising of indices are enabled via 𝐺
𝐴𝐵

and its
inverse𝐺𝐴𝐵. Nonlinear connection coefficients on 𝑇𝑀\0 are
defined as

𝑁
𝐴

𝐵
= 𝛾
𝐴

𝐵𝐶
𝑌
𝐶
− 𝐶
𝐴

𝐵𝐶
𝛾
𝐶

𝐷𝐸
𝑌
𝐷
𝑌
𝐸
=

1

2

𝜕𝐺
𝐴

𝜕𝑌𝐵
, (9)

where 𝐺
𝐴

= 𝛾
𝐴

𝐵𝐶
𝑌
𝐵
𝑌
𝐶. The following nonholonomic bases

are then introduced:

𝛿

𝛿𝑋𝐴
=

𝜕

𝜕𝑋𝐴
− 𝑁
𝐵

𝐴

𝜕

𝜕𝑌𝐵
, 𝛿𝑌

𝐴
= 𝑑𝑌
𝐴
+ 𝑁
𝐴

𝐵
𝑑𝑋
𝐵
. (10)

It can be shown that unlike (6), these nonholonomic
bases obey simple transformation laws like (7). The set
{𝛿/𝛿𝑋

𝐴
, 𝜕/𝜕𝑌

𝐴
} serves as a convenient local basis for𝑇(𝑇𝑀\

0); its dual set {𝑑𝑋𝐴, 𝛿𝑌𝐴} applies for the cotangent bundle
𝑇
∗
(𝑇𝑀 \ 0). A natural Riemannian metric can then be

introduced, called a Sasaki metric [31]:

G (𝑋, 𝑌) = 𝐺
𝐴𝐵

𝑑𝑋
𝐴
⊗ 𝑑𝑋
𝐵
+ 𝐺
𝐴𝐵

𝛿𝑌
𝐴
⊗ 𝛿𝑌
𝐵
. (11)

The horizontal subspace spanned by {𝛿/𝛿𝑋
𝐴
} is orthogonal

to the vertical subspace spanned by {𝜕/𝜕𝑌
𝐵
} with respect to

thismetric. Covariant derivative∇, or collectively connection
1-forms𝜔𝐴

𝐵
, define a linear connection on pulled-back bundle

𝜋
∗
𝑇𝑀 over 𝑇𝑀 \ 0. Letting 𝜐 denote an arbitrary direction,

∇
𝜐

𝜕

𝜕𝑋𝐴
= 𝜔
𝐵

𝐴
(𝜐)

𝜕

𝜕𝑋𝐵
, ∇

𝜐
𝑑𝑋
𝐴
= −𝜔
𝐴

𝐵
(𝜐) 𝑑𝑋

𝐵
. (12)

A number of linear connections have been introduced in
the Finsler literature [30, 31]. The Chern-Rund connection
[29, 44] is used most frequently in applications related to
the present paper. It is a unique linear connection on 𝜋

∗
𝑇𝑀

characterized by the structural equations [31]

𝑑 (𝑑𝑋
𝐴
) − 𝑑𝑋

𝐵
∧ 𝜔
𝐴

𝐵
= 0,

𝑑𝐺
𝐴𝐵

− 𝐺
𝐵𝐶

𝜔
𝐶

𝐴
− 𝐺
𝐴𝐶

𝜔
𝐶

𝐵
= 2𝐶
𝐴𝐵𝐶

𝛿𝑌
𝐶
.

(13)

The first structure equation implies torsion freeness and
results in

𝜔
𝐴

𝐵
= Γ
𝐴

𝐶𝐵
𝑑𝑋
𝐶
, Γ

𝐴

𝐵𝐶
= Γ
𝐴

𝐶𝐵
. (14)

The second leads to the connection coefficients

Γ
𝐴

𝐵𝐶
=

1

2
𝐺
𝐴𝐷

(
𝛿𝐺
𝐵𝐷

𝛿𝑋𝐶
+

𝛿𝐺
𝐶𝐷

𝛿𝑋𝐵
−

𝛿𝐺
𝐵𝐶

𝛿𝑋𝐷
) . (15)

When a Finsler manifold degenerates to a Riemannian
manifold,𝑁𝐴

𝐵
= 0 and Γ

𝐴

𝐵𝐶
= 𝛾
𝐴

𝐵𝐶
. Cartan’s connection 1-forms

are defined by 𝜔
𝐴

𝐵
+ 𝐶
𝐴

𝐷𝐵
𝛿𝑌
𝐷 where 𝜔

𝐴

𝐵
correspond to (14);

its coordinate formulae and properties are listed in [3]. It has

been shown [45] how components of Cartan’s connection on
a Finsler manifold can be obtained as the induced connection
of an enveloping space (with torsion) of dimension 2𝑛. When
a Finsler manifold degenerates to a locally Minkowski space
(𝐿 independent of 𝑋), then Γ

𝐴

𝐵𝐶
= 𝛾
𝐴

𝐵𝐶
= 0. Gradients of

bases with respect to the Chern-Rund connection andCartan
tensor are

∇
𝛿/𝛿𝑋
𝐴

𝛿

𝛿𝑋𝐵
= Γ
𝐶

𝐴𝐵

𝛿

𝛿𝑋𝐶
, ∇

𝛿/𝛿𝑋
𝐴

𝜕

𝜕𝑌𝐵
= 𝐶
𝐶

𝐴𝐵

𝜕

𝜕𝑌𝐶
. (16)

As an example of covariant differentiation on a Finsler
manifold with Chern-Rund connection ∇, consider a (

1

1
)

tensor field T = 𝑇
𝐴

𝐵
(𝜕/𝜕𝑋

𝐴
) ⊗ 𝑑𝑋

𝐵 on the manifold 𝑇𝑀 \ 0.
The covariant differential of T(𝑋, 𝑌) is

(∇𝑇)
𝐴

𝐵
= 𝑑𝑇
𝐴

𝐵
+ 𝑇
𝐶

𝐵
𝜔
𝐴

𝐶
− 𝑇
𝐴

𝐶
𝜔
𝐶

𝐵

= 𝑇
𝐴

𝐵|𝐶
𝑑𝑋
𝐶
+ 𝑇
𝐴

𝐵‖𝐶
𝛿𝑌
𝐶

= (∇
𝛿/𝛿𝑋
𝐶𝑇)
𝐴

𝐵
𝑑𝑋
𝐶
+ (∇
𝜕/𝜕𝑌
𝐶𝑇)
𝐴

𝐵
𝛿𝑌
𝐶

= (
𝛿𝑇
𝐴

𝐵

𝛿𝑋𝐶
+ 𝑇
𝐷

𝐵
Γ
𝐴

𝐶𝐷
− 𝑇
𝐴

𝐷
Γ
𝐷

𝐶𝐵
)𝑑𝑋
𝐶
+ (

𝜕𝑇
𝐴

𝐵

𝜕𝑌𝐶
)𝛿𝑌
𝐶
.

(17)

Notations (⋅)
|𝐴

and (⋅)
‖𝐴

denote respective horizontal and
vertical covariant derivatives with respect to ∇.

2.3. Geometric Quantities and Identities. Focusing again on
the Chern-Rund connection ∇, curvature 2-forms are

Ω
𝐴

𝐵
= 𝑑 (𝜔

𝐴

𝐵
) − 𝜔
𝐶

𝐵
∧ 𝜔
𝐴

𝐶

=
1

2
𝑅
𝐴

𝐵𝐶𝐷
𝑑𝑋
𝐶
∧ 𝑑𝑋
𝐷
+ 𝑃
𝐴

𝐵𝐶𝐷
𝑑𝑋
𝐶
∧ 𝛿𝑌
𝐷

+
1

2
𝑄
𝐴

𝐵𝐶𝐷
𝛿𝑌
𝐶
∧ 𝛿𝑌
𝐷
,

(18)

with 𝑑(⋅) the exterior derivative and ∧ the wedge product (no
factor of 1/2). HH-, HV-, and VV-curvature tensors of the
Chern-Rund connection have respective components

𝑅
𝐴

𝐵𝐶𝐷
=

𝛿Γ
𝐴

𝐵𝐷

𝛿𝑋𝐶
−

𝛿Γ
𝐴

𝐵𝐶

𝛿𝑋𝐷
+ Γ
𝐴

𝐸𝐶
Γ
𝐸

𝐵𝐷
− Γ
𝐴

𝐸𝐷
Γ
𝐸

𝐵𝐶
,

𝑃
𝐴

𝐵𝐶𝐷
= −

𝜕Γ
𝐴

𝐵𝐶

𝜕𝑌𝐷
, 𝑄

𝐴

𝐵𝐶𝐷
= 0.

(19)

VV-curvature vanishes, HV-curvature obeys 𝑃
𝐴

𝐵𝐶𝐷
= 𝑃
𝐴

𝐶𝐵𝐷
,

and a Bianchi identity for HH-curvature is

𝑅
𝐴

𝐵𝐶𝐷
+ 𝑅
𝐴

𝐶𝐷𝐵
+ 𝑅
𝐴

𝐷𝐵𝐶
= 0. (20)

When a Finsler manifold degenerates to a Riemannian
manifold, then 𝑅

𝐴

𝐵𝐶𝐷
become the components of the usual

curvature tensor of Riemannian geometry constructed from
𝛾
𝐴

𝐵𝐶
, and 𝑃

𝐴

𝐵𝐶𝐷
= 0. All curvatures vanish in locally

Minkowski spaces. It is not always possible to embed a Finsler
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space in a Riemannian space without torsion, but it is possible
to determine the metric and torsion tensors of a space of
dimension 2𝑛 − 1 in such a way that any 𝑛-dimensional
Finsler space is a nonholonomic subspace of such a spacewith
torsion [46].

Nonholonomicity (i.e., nonintegrability) of the horizontal
distribution is measured by [32]

[
𝛿

𝛿𝑋𝐴
,

𝛿

𝛿𝑋𝐵
] = (

𝛿𝑁
𝐶

𝐴

𝛿𝑋𝐵
−

𝛿𝑁
𝐶

𝐵

𝛿𝑋𝐴
)

𝜕

𝜕𝑌𝐶
= Λ
𝐶

𝐴𝐵

𝜕

𝜕𝑌𝐶
, (21)

where [⋅, ⋅] is the Lie bracket and Λ
𝐶

𝐴𝐵
can be interpreted as

components of a torsion tensor [30]. For the Chern-Rund
connection [31],

Λ
𝐶

𝐴𝐵
= −𝑅
𝐶

𝐷𝐴𝐵
𝑌
𝐷
. (22)

Since Lie bracket (21) is strictly vertical, the horizontal
distribution spanned by {𝛿/𝛿𝑋

𝐴
} is not involutive [31].

3. Applications in Solid Mechanics: 1973–2003

3.1. Early Director Theory. The first application of Finsler
geometry to finite deformation continuum mechanics is
credited to Ikeda [35], who developed a director theory in the
context of (pseudo-) Finslerian manifolds. A slightly earlier
work [47] considered a generalized space (not necessarily
Finslerian) comprised of finitely deforming physical and
geometrical fields. Paper [35] is focused on kinematics and
geometry: descriptions of deformations of the continuum
and the director vector fields and their possible interactions,
metric tensors (i.e., fundamental tensors), and gradients of
motions. Covariant differentials are defined that can be used
in field theories of Finsler space [41, 48]. Essential concepts
from [35] are reviewed and analyzed next.

Let 𝑀 denote a pseudo-Finsler manifold in the sense of
[35], representative of a material body with microstructure.
Let 𝑋 ∈ 𝑀 denote a material point with coordinate chart
{𝑋
𝐴
}, (𝐴 = 1, 2, 3) covering the body in its undeformed state.

A set of director vectors D
(𝛼)

is attached to each 𝑋, where
(𝛼 = 1, 2, . . . , 𝑝). In component form, directors are written
{𝐷
𝐴

(𝛼)
}. In the context of notation in Section 2, 𝑀 is similar

to a Finsler manifold with 𝑌
𝐴

→ 𝐷
𝐴

(𝛼)
, though the director

theory involvesmore degrees-of-freedomwhen𝑝 > 1, andno
fundamental function is necessarily introduced. Let 𝑥 denote
the spatial location in a deformed body of a point initially
at 𝑋, and let d

(𝛼)
denote a deformed director vector. The

deformation process is described by (𝑎 = 1, 2, 3)

𝑥
𝑎
= 𝑥
𝑎
(𝑋
𝐴
) , 𝑑

𝑎

(𝛼)
= 𝑑
𝑎

(𝛼)
[𝐷
𝐴

(𝛽)
(𝑋
𝐵
)] = 𝑑

𝑎

(𝛼)
(𝑋
𝐵
) .

(23)

The deformation gradient and its inverse are

𝐹
𝑎

𝐴
=

𝜕𝑥
𝑎

𝜕𝑋𝐴
, 𝐹

−1𝐴

𝑎
=

𝜕𝑋
𝐴

𝜕𝑥𝑎
. (24)

The following decoupled transformations are posited:

d𝑥𝑎 = 𝐹
𝑎

𝐴
d𝑋𝐴, 𝑑

𝑎

(𝛼)
= 𝐵
𝑎

𝐴
𝐷
𝐴

(𝛼)
, (25)

with 𝐵
𝑎

𝐴
= 𝐵
𝑎

𝐴
(𝑋). Differentiating the second of (25),

d𝑑𝑎
(𝛼)

= 𝐸
𝑎

(𝛼)𝐴
d𝑋𝐴 = (𝐵

𝑎

𝐵:𝐴
𝐷
𝐵

(𝛼)
+ 𝐵
𝑎

𝐵
𝐷
𝐵

(𝛼):𝐴
) d𝑋𝐴, (26)

where (⋅)
:𝐴

denotes the total covariant derivative [20, 26].
Differential line and director elements can be related by

d𝑑𝑎
(𝛼)

= 𝑓
𝑎

(𝛼)𝑏
d𝑥𝑏 = 𝐹

−1𝐴

𝑏
𝐸
𝑎

(𝛼)𝐴
d𝑥𝑏. (27)

Let 𝐺
𝐴𝐵

(𝑋) denote the metric in the reference con-
figuration, such that d𝑆2 = d𝑋𝐴𝐺

𝐴𝐵
d𝑋𝐵 is a measure

of length (𝐺
𝐴𝐵

= 𝛿
𝐴𝐵

for Cartesian coordinates {𝑋
𝐴
}).

Fundamental tensors in the spatial frame describing strains
of the continuum and directors are

𝐶
𝑎𝑏

= 𝐹
−1𝐴

𝑎
𝐺
𝐴𝐵

𝐹
−1𝐵

𝑏
, 𝐶

(𝛼𝛽)

𝑎𝑏
= 𝐸
−1𝐴

(𝛼)𝑎
𝐺
𝐴𝐵

𝐸
−1𝐵

(𝛼)𝑏
. (28)

Let Γ
𝐴

𝐵𝐶
and Γ

𝛼

𝛽𝛾
denote coefficients of linear connections

associated with continuum and director fields, related by

Γ
𝐴

𝐵𝐶
= 𝐷
𝐴

(𝛼)
𝐷
(𝛽)

𝐵
𝐷
(𝛾)

𝐶
Γ
𝛼

𝛽𝛾
+ 𝐷
𝐴

(𝛼)
𝐷
(𝛼)

𝐶:𝐵
, (29)

where 𝐷
𝐴

(𝛼)
𝐷
(𝛼)

𝐵
= 𝛿
𝐴

𝐵
and 𝐷

𝐴

(𝛽)
𝐷
(𝛼)

𝐴
= 𝛿
𝛼

𝛽
. The covariant

differential of a referential vector field V, where locally
V(𝑋) ∈ 𝑇

𝑋
𝑀, with respect to this connection is

(∇𝑉)
𝐴

= 𝑑𝑉
𝐴
+ Γ
𝐴

𝐵𝐶
𝑉
𝐶d𝑋𝐵; (30)

the covariant differential of a spatial vector field 𝜐, where
locally 𝜐(𝑥) ∈ 𝑇

𝑥
𝑀, is defined as

(∇𝜐)
𝑎

= 𝑑𝜐
𝑎
+ Γ
𝑎

𝑏𝑐
𝜐
𝑐d𝑥𝑏 + Γ

(𝛼)𝑎

𝑏𝑐
𝜐
𝑐d𝑥𝑏, (31)

with, for example, the differential of 𝜐𝑎(𝑥, d
(𝛼)

) given by𝑑𝜐𝑎 =
(𝜕𝜐
𝑎
/𝜕𝑥
𝑏
)d𝑥𝑏 + (𝜕𝜐

𝑎
/𝜕𝑑
𝑏

(𝛼)
)d𝑑𝑏
(𝛼)
. Euler-Schouten tensors are

𝐻
(𝛼)𝑎

𝑏𝑐
= 𝐹
𝑎

𝐴
𝐸
−1𝐴

(𝛼)𝑐:𝑏
, 𝐾

(𝛼)𝑎

𝑏𝑐
= 𝐸
𝑎

(𝛼)𝐴
𝐹
−1𝐴

𝑐:𝑏
. (32)

Ikeda [35] implies that fundamental variables entering a
field theory for directed media should include the set
(F,B,E,H,K). Given the fields in (23), the kinematic-
geometric theory is fully determined once Γ

𝛼

𝛽𝛾
are defined.

The latter coefficients can be related to defect content in
a crystal. For example, setting Γ

𝛼

𝛽𝛾
= 0 results in distant

parallelism associated with dislocation theory [7], in which
case (29) gives the negative of the wryness tensor; more
general theory is needed, however, to represent disclination
defects [49] or other general sources of incompatibility [6,
50] requiring a nonvanishing curvature tensor. The directors
themselves can be related to lattice directions, slip vectors in
crystal plasticity [51, 52], preferred directions for twinning
[6, 53], or planes intrinsically prone to cleavage fracture [54],
for example. Applications of multifield theory [47] towards
multiscale descriptions of crystal plasticity [50, 55] are also
possible.
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3.2. Kinematics and Gauge Theory on a Fiber Bundle. The
second known application of Finsler geometry towards finite
deformation of solid bodies appears in Chapter 8 of the book
of Bejancu [30]. Content in [30] extends and formalizes the
description of Ikeda [35] using concepts of tensor calculus on
the fiber bundle of a (generalized pseudo-) Finsler manifold.
Geometric quantities appropriate for use in gauge-invariant
Lagrangian functions are derived. Relevant features of the
theory in [30] are reviewed and analyzed inwhat follows next.

Define 𝜁 = (𝑍, 𝜋,𝑀,𝑈) as a fiber bundle of total space
𝑍, where 𝜋 : 𝑍 → 𝑀 is the projection to base manifold
𝑀 and 𝑈 is the fiber. Dimensions of 𝑀 and 𝑈 are 𝑛 (𝑛 = 3

for a solid volume) and 𝑝, respectively; the dimension of 𝑍 is
𝑟 = 𝑛 + 𝑝. Coordinates on 𝑍 are {𝑋

𝐴
, 𝐷
𝛼
}, where 𝑋 ∈ 𝑀

is a point on the base body in its reference configuration,
and 𝐷 is a director of dimension 𝑝 that essentially replaces
multiple directors of dimension 3 considered in Section 3.1.
The natural basis on 𝑍 is the field of frames {𝜕/𝜕𝑋𝐴, 𝜕/𝜕𝐷𝛼}.
Let𝑁𝛼

𝐴
(𝑋,𝐷) denote nonlinear connection coefficients on𝑍,

and introduce the nonholonomic bases

𝛿

𝛿𝑋𝐴
=

𝜕

𝜕𝑋𝐴
− 𝑁
𝛼

𝐴

𝜕

𝜕𝐷𝛼
, 𝛿𝐷

𝛼
= 𝑑𝐷
𝛼
+ 𝑁
𝛼

𝐴
𝑑𝑋
𝐴
. (33)

Unlike {𝜕/𝜕𝑋
𝐴
}, these nonholonomic bases obey simple

transformation laws; {𝛿/𝛿𝑋𝐴, 𝜕/𝜕𝐷𝛼} serves as a convenient
local basis for𝑇𝑍 adapted to a decomposition into horizontal
and vertical distributions:

𝑇𝑍 = 𝐻𝑍 ⊕ 𝑉𝑍. (34)

Dual set {𝑑𝑋𝐴, 𝛿𝐷𝛼} is a local basis on 𝑇
∗
𝑍. A fundamental

tensor (i.e., metric) for the undeformed state is

G (𝑋,𝐷) = 𝐺
𝐴𝐵 (𝑋,𝐷) 𝑑𝑋

𝐴
⊗ 𝑑𝑋
𝐵

+ 𝐺
𝛼𝛽 (𝑋,𝐷) 𝛿𝐷

𝛼
⊗ 𝛿𝐷
𝛽
.

(35)

Let ∇ denote covariant differentiation with respect to a
connection on the vector bundles𝐻𝑍 and 𝑉𝑍, with

∇
𝛿/𝛿𝑋
𝐴

𝛿

𝛿𝑋𝐵
= Γ
𝐶

𝐴𝐵

𝛿

𝛿𝑋𝐶
, ∇

𝛿/𝛿𝑋
𝐴

𝜕

𝜕𝐷𝛼
= 𝐶
𝛽

𝐴𝛼

𝜕

𝜕𝐷𝛽
; (36)

∇
𝜕/𝜕𝐷
𝛼

𝛿

𝛿𝑋𝐴
= 𝑐
𝐵

𝛼𝐴

𝛿

𝛿𝑋𝐵
, ∇

𝜕/𝜕𝐷
𝛼

𝜕

𝜕𝐷𝛽
= 𝜒
𝛾

𝛼𝛽

𝜕

𝜕𝐷𝛾
. (37)

Consider a horizontal vector field V = 𝑉
𝐴
(𝛿/𝛿𝑋

𝐴
) and a

vertical vector fieldW = 𝑊
𝛼
(𝜕/𝜕𝐷

𝛼
). Horizontal and vertical

covariant derivatives are defined as

𝑉
𝐴

|𝐵
=

𝛿𝑉
𝐴

𝛿𝑋𝐵
+ Γ
𝐴

𝐵𝐶
𝑉
𝐶
, 𝑊

𝛼

|𝐵
=

𝛿𝑊
𝛼

𝛿𝑋𝐵
+ 𝐶
𝛼

𝐵𝛽
𝑊
𝛽
;

𝑉
𝐴

||𝛽
=

𝛿𝑉
𝐴

𝛿𝐷𝛽
+ 𝑐
𝐴

𝛽𝐶
𝑉
𝐶
, 𝑊

𝛼

||𝛽
=

𝛿𝑊
𝛼

𝛿𝐷𝛽
+ 𝜒
𝛼

𝛽𝛿
𝑊
𝛿
.

(38)

Generalization to higher-order tensor fields is given in [30].
In particular, the following coefficients are assigned to the so-
called gauge H-connection on 𝑍:

Γ
𝐴

𝐵𝐶
=

1

2
𝐺
𝐴𝐷

(
𝛿𝐺
𝐵𝐷

𝛿𝑋𝐶
+

𝛿𝐺
𝐶𝐷

𝛿𝑋𝐵
−

𝛿𝐺
𝐵𝐶

𝛿𝑋𝐷
) ,

𝐶
𝛼

𝐴𝛽
=

𝜕𝑁
𝛼

𝐴

𝜕𝐷𝛽
, 𝑐

𝐴

𝛼𝐵
= 0,

𝜒
𝛼

𝛽𝛾
=

1

2
𝐺
𝛼𝛿

(
𝜕𝐺
𝛽𝛿

𝜕𝐷𝛾
+

𝜕𝐺
𝛾𝛿

𝜕𝐷𝛽
−

𝜕𝐺
𝛽𝛾

𝜕𝐷𝛿
) .

(39)

Comparing with the formal theory of Finsler geometry
outlined in Section 2, coefficients Γ𝐴

𝐵𝐶
are analogous to those

of the Chern-Rund connection, and (36) is analogous to
(16). The generalized pseudo-Finslerian description of [30]
reduces to Finsler geometry of [31] when 𝑝 = 𝑛 and a
fundamental function 𝐿 exists fromwhichmetric tensors and
nonlinear connection coefficients can be derived.

Let𝑄𝐾(𝑋,𝐷) denote a set of differentiable state variables,
where 𝐾 = 1, 2, . . . , 𝑟. A Lagrangian function L of the
following form is considered on 𝑍:

L (𝑋,𝐷) = L[𝐺
𝐴𝐵

, 𝐺
𝛼𝛽
, 𝑄
𝐾
,
𝛿𝑄
𝐾

𝛿𝑋𝐴
,
𝜕𝑄
𝐾

𝜕𝐷𝛼
] . (40)

Let Ω be a compact domain of 𝑍, and define the functional
(action integral)

𝐼 (Ω) = ∫
Ω

L̂ (𝑋,𝐷) 𝑑𝑋
1
⋅ ⋅ ⋅ ∧ 𝑑𝑋

𝑛
∧ 𝑑𝐷
1
⋅ ⋅ ⋅ ∧ 𝑑𝐷

𝑝
,

L̂ = [

det (𝐺

𝐴𝐵
) ‖ det (𝐺

𝛼𝛽
)

]
1/2

L.

(41)

Euler-Lagrange equations referred to the reference configu-
ration follow from the variational principle 𝛿𝐼 = 0:

𝜕L̂

𝜕𝑄𝐾
=

𝜕

𝜕𝑋𝐴
[

𝜕L̂

𝜕 (𝜕𝑄𝐾/𝜕𝑋𝐴)
] +

𝜕

𝜕𝐷𝛼
[

𝜕L̂

𝜕 (𝜕𝑄𝐾/𝜕𝐷𝛼)
] .

(42)

These can be rewritten as invariant conservation laws involv-
ing horizontal and vertical covariant derivatives with respect
to the gauge-H connection [30].

Let 𝜁


= (𝑍

, 𝜋

,𝑀

, 𝑈

) be the deformed image of

fiber bundle 𝜁, representative of deformed geometry of the
body, for example. Dimensions of 𝑀 and 𝑈

 are 𝑛 and 𝑝,
respectively; the dimension of𝑍 is 𝑟 = 𝑛+𝑝. Coordinates on
𝑍
 are {𝑥𝑎, 𝑑𝛼



}, where 𝑥 ∈ 𝑀
 is a point on the base body in

its current configuration, and 𝑑 is a director of dimension 𝑝.
The natural basis on 𝑍

 is the field of frames {𝜕/𝜕𝑥𝑎, 𝜕/𝜕𝑑𝛼


}.
Let𝑁𝛼



𝑎
(𝑥, 𝑑) denote nonlinear connection coefficients on𝑍

,
and introduce the nonholonomic bases

𝛿

𝛿𝑥𝑎
=

𝜕

𝜕𝑥𝑎
− 𝑁
𝛼


𝑎

𝜕

𝜕𝑑𝛼

, 𝛿𝑑

𝛼


= 𝑑𝑑
𝛼


+ 𝑁
𝛼


𝑎
𝑑𝑥
𝑎
. (43)

These nonholonomic bases obey simple transformation laws;
{𝛿/𝛿𝑥

𝑎
, 𝜕/𝜕𝑑

𝛼


} serves as a convenient local basis for 𝑇𝑍


where

𝑇𝑍

= 𝐻𝑍


⊕ 𝑉𝑍

. (44)
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Dual set {𝑑𝑥𝑎, 𝛿𝑑𝛼


} is a local basis on 𝑇
∗
𝑍
. Deformation

of (𝑍,𝑀) to (𝑍

,𝑀

) is dictated by diffeomorphisms in local

coordinates:

𝑥
𝑎
= 𝑥
𝑎
(𝑋
𝐴
) , 𝑑

𝛼


= 𝐵
𝛼


𝛽
(𝑋)𝐷

𝛽
. (45)

Let the usual (horizontal) deformation gradient and its
inverse have components

𝐹
𝑎

𝐴
=

𝜕𝑥
𝑎

𝜕𝑋𝐴
, 𝐹

−1𝐴

𝑎
=

𝜕𝑋
𝐴

𝜕𝑥𝑎
. (46)

It follows from (45) that, similar to (6) and (7),

𝜕

𝜕𝑋𝐴
= 𝐹
𝑎

𝐴

𝜕

𝜕𝑥𝑎
+

𝜕𝐵
𝛼


𝛽

𝜕𝑋𝐴
𝐷
𝛽 𝜕

𝜕𝑑𝛼

,

𝜕

𝜕𝐷𝛼
= 𝐵
𝛽


𝛼

𝜕

𝜕𝑑𝛽

.

(47)

Nonlinear connection coefficients on𝑍 and𝑍
 can be related

by

𝑁
𝛼


𝑎
𝐹
𝑎

𝐴
= 𝑁
𝛽

𝐴
𝐵
𝛼


𝛽
− (

𝜕𝐵
𝛼


𝛽

𝜕𝑋𝐴
)𝐷
𝛽
. (48)

Metric tensor components on 𝑍 and 𝑍
 can be related by

𝐺
𝑎𝑏
𝐹
𝑎

𝐴
𝐹
𝑏

𝐵
= 𝐺
𝐴𝐵

, 𝐺
𝛼

𝛽
𝐵
𝛼


𝛿
𝐵
𝛽


𝛾
= 𝐺
𝛿𝛾
. (49)

Linear connection coefficients on 𝑍 and 𝑍
 can be related by

Γ
𝑎

𝑏𝑐
𝐹
𝑏

𝐵
𝐹
𝑐

𝐶
= Γ
𝐴

𝐵𝐶
𝐹
𝑎

𝐴
−

𝜕𝐹
𝑎

𝐶

𝜕𝑋𝐵
,

𝐶
𝛼


𝑎𝛽
𝐹
𝑎

𝐴
𝐵
𝛽


𝛾
= 𝐶
𝜇

𝐴𝛾
𝐵
𝛼


𝜇
−

𝜕𝐵
𝛼


𝛾

𝜕𝑋𝐴
,

𝑐
𝑎

𝛼

𝑏
𝐹
𝑏

𝐴
𝐵
𝛼


𝛽
= 𝑐
𝐵

𝛽𝐴
𝐹
𝑎

𝐵
,

𝜒
𝛼


𝛽

𝛿
𝐵
𝛽


𝛾
𝐵
𝛿


𝜂
= 𝜒
𝜀

𝛾𝜂
𝐵
𝛼


𝜀
.

(50)

Using the above transformations, a complete gauge H-
connection can be obtained for 𝑍 from reference quantities
on 𝑍 if the deformation functions in (45) are known. A
Lagrangian can then be constructed analogously to (40), and
Euler-Lagrange equations for the current configuration of
the body can be derived from a variational principle where
the action integral is taken over the deformed space. In
application of pseudo-Finslerian fiber bundle theory similar
to that outlined above, Fu et al. [37] associate 𝑑 with the
director of an oriented area element that may be degraded
in strength due to damage processes such as fracture or void
growth in the material. See also related work in [39].

3.3. Recent Theories in Damage Mechanics and Finite Plastic-
ity. Saczuk et al. [36, 38, 40] adapted a generalized version of
pseudo-Finsler geometry similar to the fiber bundle approach

of [30] and Section 3.2 to describe mechanics of solids with
microstructure undergoing finite elastic-plastic or elastic-
damage deformations. Key new contributions of these works
include definitions of total deformation gradients consist-
ing of horizontal and vertical components and Lagrangian
functions with corresponding energy functionals dependent
on total deformations and possibly other state variables.
Constitutive relations and balance equations are then derived
from variations of such functionals. Essential details are
compared and analyzed in the following discussion. Notation
usually follows that of Section 3.2, with a few generalizations
defined as they appear.

Define 𝜁 = (𝑍, 𝜋,𝑀,𝑈) as a fiber bundle of total space
𝑍, where 𝜋 : 𝑍 → 𝑀 is the projection to base manifold
𝑀 and 𝑈 is the fiber. Dimensions of 𝑀 and 𝑈 are 3 and 𝑝,
respectively; the dimension of 𝑍 is 𝑟 = 3 + 𝑝. Coordinates
on 𝑍 are {𝑋𝐴, 𝐷𝛼}, where𝑋 ∈ 𝑀 is a point on the base body
in its reference configuration, and𝐷 is a vector of dimension
𝑝. Let 𝜁 = (𝑍


, 𝜋

,𝑀

, 𝑈

) be the deformed image of fiber

bundle 𝜁; dimensions of𝑀 and 𝑈
 are 3 and 𝑝, respectively;

the dimension of 𝑍 is 𝑟 = 3 + 𝑝. Coordinates on 𝑍
 are

{𝑥
𝑎
, 𝑑
𝛼


}, where 𝑥 ∈ 𝑀
 is a point on the base body in

its current configuration, and 𝑑 is a vector of dimension 𝑝.
Tangent bundles can be expressed as direct sums of horizontal
and vertical distributions:

𝑇𝑍 = 𝐻𝑍 ⊕ 𝑉𝑍, 𝑇𝑍

= 𝐻𝑍


⊕ 𝑉𝑍

. (51)

Deformation of 𝑍 to 𝑍
 is locally represented by the smooth

and invertible coordinate transformations

𝑥
𝑎
= 𝑥
𝑎
(𝑋
𝐴
, 𝐷
𝛼
) , 𝑑

𝛼


= 𝐵
𝛼


𝛽
𝐷
𝛽
, (52)

where in general the director deformation map [38]

𝐵
𝛼


𝛽
= 𝐵
𝛼


𝛽
(𝑋,𝐷) . (53)

Total deformation gradientF : 𝑇𝑍 → 𝑇𝑍
 is defined as

F = F + F̂ = 𝑥
𝑎

|𝐴

𝛿

𝛿𝑥𝑎
⊗ 𝑑𝑋
𝐴
+ 𝑥
𝑎

‖𝛼
𝛿
𝛽


𝑎

𝜕

𝜕𝑑𝛽

⊗ 𝛿𝐷
𝛼
. (54)

In component form, its horizontal and vertical parts are

𝐹
𝑎

𝐴
= 𝑥
𝑎

|𝐴
=

𝛿𝑥
𝑎

𝛿𝑋𝐴
+ Γ
𝐵

𝐴𝐶
𝛿
𝐶

𝑐
𝛿
𝑎

𝐵
𝑥
𝑐
,

𝐹
𝛽


𝛼
= 𝑥
𝑎

‖𝛼
𝛿
𝛽


𝑎
= (

𝜕𝑥
𝑎

𝜕𝐷𝛼
+ 𝐶
𝐵

𝐴𝐶
𝛿
𝐴

𝛼
𝛿
𝑎

𝐵
𝛿
𝐶

𝑐
𝑥
𝑐
)𝛿
𝛽


𝑎
.

(55)

To eliminate further excessive use of Kronecker deltas, let
𝑝 = 3, 𝐷

𝐴
= 𝛿
𝐴

𝛼
𝐷
𝛼, and 𝑑

𝑎
= 𝛿
𝑎

𝛼
𝑑
𝛼


. Introducing
a fundamental Finsler function 𝐿(𝑋,𝐷) with properties
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described in Section 2.1 (𝑌 → 𝐷), the following definitions
hold [38]:

𝐺
𝐴𝐵

=
1

2

𝜕
2
(𝐿
2
)

𝜕𝐷𝐴𝜕𝐷𝐵
;

𝛾
𝐴

𝐵𝐶
=

1

2
𝐺
𝐴𝐷

(
𝜕𝐺
𝐵𝐷

𝜕𝑋𝐶
+

𝜕𝐺
𝐶𝐷

𝜕𝑋𝐵
−

𝜕𝐺
𝐵𝐶

𝜕𝑋𝐷
) ;

𝑁
𝐴

𝐵
=

1

2

𝜕𝐺
𝐴

𝜕𝐷𝐵
, 𝐺
𝐴
= 𝛾
𝐴

𝐵𝐶
𝐷
𝐵
𝐷
𝐶
;

𝐶
𝐴𝐵𝐶

=
1

2

𝜕𝐺
𝐴𝐵

𝜕𝐷𝐶
=

1

4

𝜕
3
(𝐿
2
)

𝜕𝐷𝐴𝜕𝐷𝐵𝜕𝐷𝐶
;

Γ
𝐴

𝐵𝐶
=

1

2
𝐺
𝐴𝐷

(
𝛿𝐺
𝐵𝐷

𝛿𝑋𝐶
+

𝛿𝐺
𝐶𝐷

𝛿𝑋𝐵
−

𝛿𝐺
𝐵𝐶

𝛿𝑋𝐷
) ;

𝛿

𝛿𝑋𝐴
=

𝜕

𝜕𝑋𝐴
− 𝑁
𝐵

𝐴

𝜕

𝜕𝐷𝐵
, 𝛿𝐷

𝐴
= 𝑑𝐷
𝐴
+ 𝑁
𝐴

𝐵
𝑑𝑋
𝐵
.

(56)

Notice that Γ𝐴
𝐵𝐶

correspond to the Chern-Rund connection
and 𝐶

𝐴𝐵𝐶
to the Cartan tensor. In [36], 𝐷 is presumed

stationary (𝐵𝛼


𝛽
→ 𝛿

𝛼


𝛽
) and is associated with a residual

plastic disturbance, 𝐶
𝐴𝐵𝐶

is remarked to be associated with
dislocation density, and the HV-curvature tensor of Γ𝐴

𝐵𝐶
(e.g.,

𝑃
𝐴

𝐵𝐶𝐷
of (19)) is remarked to be associated with disclination

density. In [38], B is associated with lattice distortion and 𝐿
2

with residual strain energy density of the dislocation density
[6, 56]. In [40], a fundamental function and connection
coefficients are not defined explicitly, leaving the theory open
to generalization. Note also that (52) is more general than
(45). When the latter holds and Γ

𝐴

𝐵𝐶
= 0, then F → F, the

usual deformation gradient of continuum mechanics.
Restricting attention to the time-independent case, a

Lagrangian is posited of the form

L (𝑋,𝐷)

= L [𝑋,𝐷, 𝑥 (𝑋,𝐷) ,F (𝑋,𝐷) ,Q (𝑋,𝐷) , ∇Q (𝑋,𝐷)] ,

(57)

whereQ is a generic vector of state variables and ∇ denotes a
generic gradient that may include partial, horizontal, and/or
vertical covariant derivatives in the reference configuration
as physically and mathematically appropriate. Let Ω be a
compact domain of 𝑍, and define

𝐼 (Ω) = ∫
Ω

L̂ (𝑋,𝐷) 𝑑𝑋
1
⋅ ⋅ ⋅ ∧ 𝑑𝑋

𝑛
∧ 𝑑𝐷
1
⋅ ⋅ ⋅ ∧ 𝑑𝐷

𝑝
,

L̂ = [
det (𝐺𝐴𝐵)




det( 𝜕

𝜕𝑋𝐴
⋅

𝜕

𝜕𝑋𝐵
)

]

1/2

L.

(58)

Euler-Lagrange equations referred to the reference configura-
tion follow from the variational principle 𝛿𝐼 = 0 analogously

to (42). Conjugate forces to variations in kinematic and state
variables can be defined as derivatives of L with respect
to these variables. Time dependence, dissipation, first and
second laws of thermodynamics, and temperature effects are
also considered in [38, 40]; details are beyond the scope of this
review. In the only known application of Finsler geometry to
solve a boundary value problem in the context of mechanics
of solids with microstructure, Stumpf and Saczuk [38] use
the theory outlined above to study localization of plastic slip
in a bar loaded in tension, with 𝐷

𝐴 specifying a preferred
material direction for slip. In [40], various choices of Q and
its gradient are considered in particular energy functions, for
example, state variables associated with gradients of damage
parameters or void volume fractions.

4. Towards a New Theory of Structured Media

4.1. Background and Scope. In Section 4 it is shown how
Finsler geometry can be applied to describe physical prob-
lems in deformable continua with evolving microstructures
in a manner somewhat analogous to the phase field method.
Phase field theory [57] encompasses various diffuse interface
models wherein the boundary between two (or more) phases
or states ofmaterial is distinguished by the gradient of a scalar
field called an order parameter.The order parameter, denoted
herein by 𝜂, typically varies continuously between values of
zero and unity in phases one and two, with intermediate
values in phase boundaries. Mathematically,

𝜂 (𝑋) = 0 ∀𝑋 ∈ phase 1,

𝜂 (𝑋) = 1 ∀𝑋 ∈ phase 2,

𝜂 (𝑋) ∈ (0, 1) ∀𝑋 ∈ interface.

(59)

Physically, phases might correspond to liquid and solid
in melting-solidification problems, austenite and martensite
in structure transformations, vacuum and intact solid in
fracture mechanics, or twin and parent crystal in twinning
descriptions. Similarities between phase field theory and
gradient-type theories of continuummechanics are described
in [58]; both classes of theory benefit from regularization
associated with a length scale dependence of solutions that
can render numerical solutions to governing equations mesh
independent. Recent phase field theories incorporating finite
deformation kinematics include [59] for martensitic trans-
formations, [54] for fracture, [60] for amorphization, and
[53] for twinning. The latter (i.e., deformation twinning) is
the focus of a more specific description that follows later in
Section 4.3 of this paper, though it is anticipated that the
Finsler-type description could be adapted straightforwardly
to describe other deformation physics.

Deformation twinning involves shearing and lattice rota-
tion/reflection induced bymechanical stress in a solid crystal.
The usual elastic driving force is a resolved shear stress on
the habit plane, in the direction of twinning shear. Twinning
can be reversible or irreversible depending on material and
loading protocol; the physics of deformation twinning is
described more fully in [61] and Chapter 8 of [6].Theory that
follows in Section 4.2 is thought to be the first to recognize
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analogies between phase field theory and Finsler geometry
and that in Section 4.3 the first to apply Finsler geometric
concepts to model deformation twinning. Notation follows
that of Section 3.2 and Section 3.3 with possible exceptions
highlighted as they appear.

4.2. Finsler Geometry and Kinematics. As in Section 3.3,
define 𝜁 = (𝑍, 𝜋,𝑀,𝑈) as a fiber bundle of total space 𝑍

with 𝜋 : 𝑍 → 𝑀. Considered is a three-dimensional solid
body with state vector D: dimensions of 𝑀 and 𝑈 are 3;
the dimension of 𝑍 is 6. Coordinates on 𝑍 are {𝑋

𝐴
, 𝐷
𝐴
},

(𝐴 = 1, 2, 3), where 𝑋 ∈ 𝑀 is a point on the base body
in its reference configuration. Let 𝜁 = (𝑍


, 𝜋

,𝑀

, 𝑈

) be

the deformed image of fiber bundle 𝜁; dimensions of 𝑀


and 𝑈
 are 3, and that of Z is 6. Coordinates on 𝑍

 are
{𝑥
𝑎
, 𝑑
𝑎
}, where 𝑥 ∈ 𝑀

 is a point on the base body in
its current configuration, and d is the updated state vector.
Tangent bundles are expressed as direct sums of horizontal
and vertical distributions as in (51):

𝑇𝑍 = 𝐻𝑍 ⊕ 𝑉𝑍, 𝑇𝑍

= 𝐻𝑍


⊕ 𝑉𝑍

. (60)

Deformation of 𝑍 to 𝑍
 is locally represented by the smooth

and invertible coordinate transformations

𝑥
𝑎
= 𝑥
𝑎
(𝑋
𝐴
, 𝐷
𝐴
) , 𝑑

𝑎
= 𝐵
𝑎

𝐴
𝐷
𝐴
, (61)

where the director deformation function is, in general,

𝐵
𝑎

𝐴
= 𝐵
𝑎

𝐴
(𝑋,𝐷) . (62)

Introduce the smooth scalar order parameter field 𝜂 ∈ 𝑀

as in (59), where 𝜂 = 𝜂(𝑋). Here D is identified with the
reference gradient of 𝜂:

𝐷
𝐴
(𝑋) = 𝛿

𝐴𝐵 𝜕𝜂 (𝑋)

𝜕𝑋𝐵
. (63)

For simplicity, here {𝑋
𝐴
} is taken as a Cartesian coordinate

chart on 𝑀 such that 𝑋𝐴 = 𝛿
𝐴𝐵

𝑋
𝐵
, and so forth. Similarly,

{𝑥
𝑎
} is chosen Cartesian. Generalization to curvilinear coor-

dinates is straightforward but involves additional notation.
Define the partial deformation gradient

𝐹
𝑎

𝐴
(𝑋,𝐷) =

𝜕𝑥
𝑎
(𝑋,𝐷)

𝜕𝑋𝐴
. (64)

By definition and then from the chain rule,

𝑑
𝑎
[𝑥 (𝑋,𝐷) ,𝐷] = 𝛿

𝑎𝑏 𝜕𝜂 (𝑋)

𝜕𝑥𝑏

= 𝛿
𝑎𝑏

(
𝜕𝑋
𝐴

𝜕𝑥𝑏
)(

𝜕𝜂

𝜕𝑋𝐴
)

= 𝐹
−1𝐴

𝑏
𝛿
𝑎𝑏
𝛿
𝐴𝐵

𝐷
𝐵
,

(65)

leading to

𝐵
𝑎

𝐴
(𝑋,𝐷) = 𝐹

−1𝐵

𝑏
(X, 𝐷) 𝛿

𝑎𝑏
𝛿
𝐴𝐵

. (66)

From (63) and (65), local integrability (null curl) conditions
𝜕𝐷
𝐴
/𝜕𝑋
𝐵

= 𝜕𝐷
𝐵
/𝜕𝑋
𝐴 and 𝜕𝑑

𝑎
/𝜕𝑥
𝑏

= 𝜕𝑑
𝑏
/𝜕𝑥
𝑎 hold.

As in Section 3, 𝑁
𝐴

𝐵
(𝑋,𝐷) denote nonlinear connection

coefficients on 𝑍, and the Finsler-type nonholonomic bases

𝛿

𝛿𝑋𝐴
=

𝜕

𝜕𝑋𝐴
− 𝑁
𝐵

𝐴

𝜕

𝜕𝐷𝐵
, 𝛿𝐷

𝐴
= 𝑑𝐷
𝐴
+ 𝑁
𝐴

𝐵
𝑑𝑋
𝐵
. (67)

Let 𝑁𝑎
𝑏
= 𝑁
𝐴

𝐵
𝛿
𝑎

𝐴
𝛿
𝐵

𝑏
denote nonlinear connection coefficients

on 𝑍
 [38], and define the nonholonomic spatial bases as

𝛿

𝛿𝑥𝑎
=

𝜕

𝜕𝑥𝑎
− 𝑁
𝑏

𝑎

𝜕

𝜕𝑑𝑏
, 𝛿𝑑

𝑎
= 𝑑𝑑
𝑎
+ 𝑁
𝑎

𝑏
𝑑𝑥
𝑏
. (68)

Total deformation gradientF : 𝑇𝑍 → 𝑇𝑍
 is defined as

F = F + F̂ = 𝑥
𝑎

|𝐴

𝛿

𝛿𝑥𝑎
⊗ 𝑑𝑋
𝐴
+ 𝑥
𝑎

‖𝐴

𝜕

𝜕𝑑𝑎
⊗ 𝛿𝐷
𝐴
. (69)

In component form, its horizontal and vertical parts are, as in
(55) and the theory of [38],

𝐹
𝑎

𝐴
= 𝑥
𝑎

|𝐴
=

𝛿𝑥
𝑎

𝛿𝑋𝐴
+ Γ
𝐵

𝐴𝐶
𝛿
𝑎

𝐵
𝛿
𝐶

𝑐
𝑥
𝑐
,

𝐹
𝑎

𝐴
= 𝑥
𝑎

‖𝐴
=

𝜕𝑥
𝑎

𝜕𝐷𝐴
+ 𝐶
𝐵

𝐴𝐶
𝛿
𝑎

𝐵
𝛿
𝐶

𝑐
𝑥
𝑐
.

(70)

As in Section 3.3, a fundamental Finsler function 𝐿(𝑋,𝐷),
homogeneous of degree one in𝐷, is introduced. Then

G
𝐴𝐵

=
1

2

𝜕
2
(𝐿
2
)

𝜕𝐷𝐴𝜕𝐷𝐵
; (71)

𝛾
𝐴

𝐵𝐶
=

1

2
𝐺
𝐴𝐷

(
𝜕𝐺
𝐵𝐷

𝜕𝑋𝐶
+

𝜕𝐺
𝐶𝐷

𝜕𝑋𝐵
−

𝜕𝐺
𝐵𝐶

𝜕𝑋𝐷
) ; (72)

𝑁
𝐴

𝐵
=

1

2

𝜕𝐺
𝐴

𝜕𝐷𝐵
, 𝐺
𝐴
= 𝛾
𝐴

𝐵𝐶
𝐷
𝐵
𝐷
𝐶
; (73)

𝐶
𝐴𝐵𝐶

=
1

2

𝜕𝐺
𝐴𝐵

𝜕𝐷𝐶
=

1

4

𝜕
3
(𝐿
2
)

𝜕𝐷𝐴𝜕𝐷𝐵𝜕𝐷𝐶
; (74)

Γ
𝐴

𝐵𝐶
=

1

2
𝐺
𝐴𝐷

(
𝛿𝐺
𝐵𝐷

𝛿𝑋𝐶
+

𝛿𝐺
𝐶𝐷

𝛿𝑋𝐵
−

𝛿𝐺
𝐵𝐶

𝛿𝑋𝐷
) . (75)

Specifically for application of the theory in the context of
initially homogeneous single crystals, let

𝐿 = [𝜅
𝐴𝐵

𝐷
𝐴
𝐷
𝐵
]
1/2

= [𝜅
𝐴𝐵

(
𝜕𝜂

𝜕𝑋𝐴
)(

𝜕𝜂

𝜕𝑋𝐵
)]

1/2

, (76)

𝜅
𝐴𝐵

= 𝐺
𝐴𝐵

= 𝛿
𝐴𝐶

𝛿
𝐵𝐷

𝐺
𝐶𝐷

= constant. (77)

The metric tensor with Cartesian components 𝜅
𝐴𝐵

is iden-
tified with the gradient energy contribution to the surface
energy term in phase field theory [53], as will bemade explicit
later in Section 4.3. From (76) and (77), reference geometry 𝜁
is now Minkowskian since the fundamental Finsler function
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𝐿 = 𝐿(𝐷) is independent of 𝑋. In this case, (72)–(75) and
(67)-(68) reduce to

Γ
𝐴

𝐵𝐶
= 𝛾
𝐴

𝐵𝐶
= 𝐶
𝐴

𝐵𝐶
= 0; 𝑁

𝐴

𝐵
= 0, 𝑛

𝑎

𝑏
= 0;

𝛿

𝛿𝑋𝐴
=

𝜕

𝜕𝑋𝐴
, 𝛿𝐷

𝐴
= 𝑑𝐷
𝐴
;

𝛿

𝛿𝑥𝑎
=

𝜕

𝜕𝑥𝑎
, 𝛿𝑑

𝑎
= 𝑑𝑑
𝑎
.

(78)

Horizontal and vertical covariant derivatives in (69) reduce
to partial derivatives with respect to𝑋

𝐴 and𝐷
𝐴, respectively,

leading to

F =
𝜕𝑥
𝑎

𝜕𝑋𝐴
𝜕

𝜕𝑥𝑎
⊗ 𝑑𝑋
𝐴
+

𝜕𝑥
𝑎

𝜕𝐷𝐴
𝜕

𝜕𝑑𝑎
⊗ 𝑑𝐷
𝐴

= 𝐹
𝑎

𝐴

𝜕

𝜕𝑥𝑎
⊗ 𝑑𝑋
𝐴
+ 𝑉
𝑎

𝐴

𝜕

𝜕𝑑𝑎
⊗ 𝑑𝐷
𝐴
.

(79)

When 𝑥 = 𝑥(𝑋), then vertical deformation components
𝐹
𝑎

𝐴
= 𝑉
𝑎

𝐴
= 0. In a more general version of (76) applicable

to heterogeneousmaterial properties, 𝜅
𝐴𝐵

= 𝜅
𝐴𝐵

(𝑋,𝐷) and is
homogeneous of degree zero with respect to𝐷, and the above
simplifications (i.e., vanishing connection coefficients) need
not apply.

4.3. Governing Equations: Twinning Application. Consider a
crystal with a single potentially active twin system. Applying
(59), let 𝜂(𝑋) = 1 ∀𝑋 ∈ twinned domains, 𝜂(𝑋) = 0 ∀𝑋 ∈

parent (original) crystal domains, and 𝜂(𝑋) ∈ (0, 1) ∀𝑋 ∈ in
twin boundary domains. As defined in [53], let 𝛾

0
denote the

twinning eigenshear (a scalar constant),m = 𝑚
𝐴
𝑑𝑋
𝐴 denote

the unit normal to the habit plane (i.e., the normal covector
to the twin boundary), and s = 𝑠

𝐴
(𝜕/𝜕𝑋

𝐴
) the direction of

twinning shear. In the context of the geometric framework
of Section 4.2, and with simplifying assumptions (76)–(79)
applied throughout the present application, s ∈ 𝑇𝑀 and
m ∈ 𝑇

∗
𝑀 are constant fields that obey the orthonormality

conditions

⟨s,m⟩ = 𝑠
𝐴
𝑚
𝐵
⟨

𝜕

𝜕𝑋𝐴
, 𝑑𝑋
𝐵
⟩ = 𝑠

𝐴
𝑚
𝐴
= 0. (80)

Twinning deformation is defined as the (1
1
) tensor field

Ξ = Ξ
𝐴

𝐵

𝜕

𝜕𝑋𝐴
⊗ 𝑑𝑋
𝐵
= 1 + 𝛾

0
𝜑s ⊗m,

Ξ
𝐴

𝐵
[𝜂 (𝑋)] = 𝛿

𝐴

𝐵
+ 𝛾
0
𝜑 [𝜂 (𝑋)] 𝑠

𝐴
𝑚
𝐵
.

(81)

Note that detΞ = 1 + 𝛾
0
𝜑⟨s,m⟩ = 1. Scalar interpolation

function 𝜑(𝜂) ∈ [0, 1] monotonically increases between its
endpoints with increasing 𝜂, and it satisfies 𝜑(0) = 0, 𝜑(1) =

1, and 𝜑

(0) = 𝜑


(1) = 0. A typical example is the cubic

polynomial [53, 59]

𝜑 [𝜂 (𝑋)] = 3 [𝜂 (𝑋)]
2
− 2 [𝜂 (𝑋)]

3
. (82)

The horizontal part of the deformation gradient in (79) obeys
a multiplicative decomposition:

F = AΞ, 𝐹
𝑎

𝐴
= 𝐴
𝑎

𝐵
Ξ
𝐵

𝐴
. (83)

The elastic lattice deformation is the two-point tensor A:

A = 𝐴
𝑎

𝐴

𝜕

𝜕𝑥𝑎
⊗ 𝑑𝑋
𝐵
= FΞ−1 = F (1 − 𝛾

0
𝜑s ⊗m) . (84)

Note that (83) can be considered a version of the Bilby-
Kröner decomposition proposed for elastic-plastic solids [8,
62] and analyzed at length in [5, 11, 26] from perspectives of
differential geometry of anholonomic space (neither A nor
Ξ is necessarily integrable to a vector field). The following
energy potentials, measured per unit reference volume, are
defined:

𝜓 (F, 𝜂,D) = 𝑊(F, 𝜂) + 𝑓 (𝜂,D) ; (85)

𝑊 = 𝑊[A (F, 𝜂)] , 𝑓 (𝜂,D) = 𝛼𝜂
2
(1 − 𝜂)

2
+ 𝐿
2
(D) .

(86)

Here, 𝑊 is the strain energy density that depends on elastic
lattice deformation A (assuming 𝑉

𝑎

𝐴
= 𝑥
𝑎

‖𝐴
= 0 in (86)),

𝑓 is the total interfacial energy that includes a double-well
function with constant coefficient 𝛼, and 𝐿

2
= 𝜅
𝐴𝐵

𝐷
𝐴
𝐷
𝐵

is the square of the fundamental Finsler function given in
(76). For isotropic twin boundary energy 𝜅

𝐴𝐵
= 𝜅
0
𝛿
𝐴𝐵
, and

equilibrium surface energy Γ
0
and regularization width 𝑙

0

obey 𝜅
0
= (3/4)Γ

0
𝑙
0
and 𝛼 = 12Γ

0
/𝑙
0
[53]. The total energy

potential per unit volume is 𝜓. Let Ω be a compact domain
of𝑍, which can be identified as a region of the material body,
and define the total potential energy functional

Ψ [𝑥 (𝑋) , 𝜂 (𝑋)] = ∫
Ω

𝜓dΩ,

dΩ =
det (𝐺𝐴𝐵)


1/2

𝑑𝑋
1
⋅ ⋅ ⋅ ∧ 𝑑𝑋

𝑛
∧ 𝑑𝐷
1
⋅ ⋅ ⋅ ∧ 𝑑𝐷

𝑝
.

(87)

Recall that for solid bodies, 𝑛 = 𝑝 = 3. For quasi-static con-
ditions (null kinetic energy), the Lagrangian energy density
is L = −𝜓. The null first variation of the action integral,
appropriate for essential (Dirichlet) boundary conditions on
boundary 𝜕Ω, is

𝛿𝐼 (Ω) = −𝛿Ψ = −∫
Ω

𝛿𝜓dΩ = 0, (88)

where the first variation of potential energy density is defined
here by varying 𝑥 and 𝜂 within Ω, holding reference coordi-
nates𝑋 and reference volume form dΩ fixed:

𝛿𝜓 =
𝜕𝑊

𝜕𝐹𝑎
𝐴

𝜕𝛿𝑥
𝑎

𝜕𝑋𝐴
+ (

𝜕𝑊

𝜕𝜂
+

𝜕𝑓

𝜕𝜂
) 𝛿𝜂 +

𝜕𝑓

𝜕𝐷𝐴
𝜕𝛿𝜂

𝜕𝑋𝐴
. (89)

Application of the divergence theorem, here with vanishing
variations of 𝑥 and 𝜂 on 𝜕Ω, leads to the Euler-Lagrange
equations [53]

𝜕𝑃
𝐴

𝑎

𝜕𝑋𝐴
=

𝜕 (𝜕𝑊/𝜕𝑥
𝑎

|𝐴
)

𝜕𝑋𝐴
= 0,

𝜍 +
𝜕𝑓

𝜕𝜂
= 2𝜅
𝐴𝐵

𝜕𝐷
𝐴

𝜕𝑋
𝐵

= 2𝜅
𝐴𝐵

𝜕
2
𝜂

𝜕𝑋
𝐴
𝜕𝑋
𝐵

.

(90)
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The first Piola-Kirchhoff stress tensor is P = 𝜕𝑊/𝜕F, and
the elastic driving force for twinning is 𝜍 = 𝜕𝑊/𝜕𝜂. These
equations, which specifymechanical and phase equilibria, are
identical to those derived in [53], but have arrived here via
use of Finsler geometry on fiber bundle 𝜁. In order to achieve
such correspondence, simplifications 𝐿(𝑋,𝐷) → 𝐿(𝐷) and
𝑥(𝑋,𝐷) → 𝑥(𝑋) have been applied, the first reducing
the fundamental Finsler function to one of Minkowskian
geometry to describe energetics of twinning in an initially
homogeneous single crystal body (𝜅

𝐴B = constant).
Amore general and potentially powerful approach would

be to generalize fundamental function 𝐿 and deformed
coordinates 𝑥 to allow for all possible degrees-of-freedom.
For example, a fundamental function 𝐿(𝑋,𝐷) corresponding
to nonuniform values of 𝜅

𝐴𝐵
(𝑋) in the vicinity of grain

or phase boundaries, wherein properties change rapidly
with position 𝑋, could be used instead of a Minkowskian
(position-independent) fundamental function 𝐿(𝐷). Such
generalization would lead to enriched kinematics and nonva-
nishing connection coefficients, and itmay yield new physical
and mathematical insight into equilibrium equations—for
example, when expressed in terms of horizontal and vertical
covariant derivatives [30]—used to describe mechanics of
interfaces and heterogeneities such as inclusions or other
defects. Further study, to be pursued in the future, is needed
to relate such a general geometric description to physical
processes in real heterogeneous materials. An analogous
theoretical description could be derived straightforwardly to
describe stress-induced amorphization or cleavage fracture
in crystalline solids, extending existing phase field models
[54, 60] of such phenomena.

5. Conclusions

Finsler geometry and its prior applications towards contin-
uum physics of materials with microstructure have been
reviewed. A new theory, in general considering a deformable
vector bundle of Finsler character, has been posited, wherein
the director vector of Finsler space is associated with a
gradient of a scalar order parameter. It has been shown
how a particular version of the new theory (Minkowskian
geometry) can reproduce governing equations for phase
field modeling of twinning in initially homogeneous single
crystals. A more general approach allowing the fundamental
function to depend explicitly on material coordinates has
been posited that would offer enriched description of inter-
facial mechanics in polycrystals or materials with multiple
phases.
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